Color Image Restoration Using Nonlocal Mumford-Shah Regularizers
نویسندگان
چکیده
We introduce several color image restoration algorithms based on the Mumford-Shah model and nonlocal image information. The standard Ambrosio-Tortorelli and Shah models are defined to work in a small local neighborhood, which are sufficient to denoise smooth regions with sharp boundaries. However, textures are not local in nature and require semi-local/non-local information to be denoised efficiently. Inspired from recent work (NL-means of Buades, Coll, Morel and NL-TV of Gilboa, Osher), we extend the standard models of Ambrosio-Tortorelli and Shah approximations to Mumford-Shah functionals to work with nonlocal information, for better restoration of fine structures and textures. We present several applications of the proposed nonlocal MS regularizers in image processing such as color image denoising, color image deblurring in the presence of Gaussian or impulse noise, color image inpainting, and color image super-resolution. In the formulation of nonlocal variational models for the image deblurring with impulse noise, we propose an efficient preprocessing step for the computation of the weight function w. In all the applications, the proposed nonlocal regularizers produce superior results over the local ones, especially in image inpainting with large missing regions. Experimental results and comparisons between the proposed nonlocal methods and the local ones are shown.
منابع مشابه
Color Image Deblurring with Impulsive Noise
We propose a variational approach for deblurring and impulsive noise removal in multi-channel images. A robust data fidelity measure and edge preserving regularization are employed. We consider several regularization approaches, such as Beltrami flow, Mumford-Shah and Total-Variation Mumford-Shah. The latter two methods are extended to multi-channel images and reformulated using the Γ -converge...
متن کاملNonlocal Variational Image Deblurring Models in the Presence of Gaussian or Impulse Noise
We wish to recover an image corrupted by blur and Gaussian or impulse noise, in a variational framework. We use two data-fidelity terms depending on the noise, and several local and nonlocal regularizers. Inspired by Buades-Coll-Morel, Gilboa-Osher, and other nonlocal models, we propose nonlocal versions of the Ambrosio-Tortorelli and Shah approximations to Mumford-Shah-like regularizing functi...
متن کاملProgressive Blind Deconvolution
We present a novel progressive framework for blind image restoration. Common blind restoration schemes first estimate the blur kernel, then employ non-blind deblurring. However, despite recent progress, the accuracy of PSF estimation is limited. Furthermore, the outcome of non-blind deblurring is highly sensitive to errors in the assumed PSF. Therefore, high quality blind deblurring has remaine...
متن کاملVariational Restoration and Edge Detection for Color
We propose and analyze extensions of the Mumford-Shah functional for color images. Our main motivation is the concept of images as surfaces. We also review most of the relevant theoretical background and computer vision literature.
متن کاملExtended Mumford-Shah Regularization in Bayesian Estimation for Blind Image Deconvolution and Segmentation
We present an extended Mumford-Shah regularization for blind image deconvolution and segmentation in the context of Bayesian estimation for blurred, noisy images or video sequences. The MumfordShah functional is extended to have cost terms for the estimation of blur kernels via a newly introduced prior solution space. This functional is minimized using Γ -convergence approximation in an embedde...
متن کامل